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Introduction: Success of NAND Flash Memory

 Cost aspect: decreased cost-per-bit (or increased memory capacity)
» Small feature size (below 10nm)
» 3D packaging technology (beyond 100 layers)
» High cell bit density (beyond 4 bit-per-cell)

* Performance aspect: decreased latencies & increased bandwidths
» Advanced NAND flash commands (e.g., full sequence program, suspend/resume)
» SSD-level enhancement techniques (e.g., caching, parallelism)
» State-of-the-art host-SSD interfaces (e.g., PCle, NVMe)

* Consequently, NAND flash-based SSDs are more widely used

= J =2 =




Introduction: Advent of Consolidated Flash
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[Single-workload scenario] [Multi-workload scenario] \4 =
[Storage hierarchy]

* Recently, a single flash device is shared by multiple workloads
 Traditionally, only one workload is executed on a single flash device

« Thanks to the increased memory capacity and performance, multiple workloads can be
executed simultaneously on a single flash device

 We call such a flash device “consolidated flash”

 Consolidated flash can be found in the storage hierarchy
A consolidated flash can be used as main/secondary storage
« We mainly target a consolidated flash in a caching/buffering layer



Introduction: Fair Resource Allocation for
Consolidated Flash in Congestion
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* There is a possibility of congestion for flash resources
« Workloads’ collective resource demands > available amounts of resource
* In such situations, a fair resource allocation is required

* We explore fair resource allocations for consolidated flash



Target SSD Resource Types (Executive Summary)

A flash device has its own finite lifetime
« A device can service a fixed number of write operations, after which it becomes unavailable
« Considered the flash lifetime as a first-class resource to be allocated

 Allocation of flash lifetime?
 Total # writes the co-running workloads can collectively consume is given (write budget)
« The write budget is distributed (allocated) to the competing workloads
« Each workload is not allowed to consume flash lifetime once its allocated writes run out

(1) Fair allocation of “device lifetime” in isolation
« Assumed that other resources (bandwidth, capacity) are not bottlenecks
» Referred to as “write allocation problem”

* (2) Fair allocation of “device lifetime” on par with “capacity” and “bandwidth”

« Assumed that all or any of the three resource types are bottlenecks
« Referred to as “multi-resource allocation problem”



(1) Write Allocation Problem and Our Proposal

* Three challenges in write allocation problem

* Our corresponding approaches for the challenges

* Our proposed device lifetime management framework

« Compared fair-looking allocation strategies and evaluation of them



Challenge (i): Consideration of Hidden Writes

host writes GC writes

‘ workload (A)

‘ workload (B)

* We need to estimate write demand of each workload for write allocation
* Write demand = estimated # host writes
* Predicting # host writes is easy

« Garbage collection (GC) is another major write contributor
» GC relocates valid data internally, which consumes writes
* Write demand = estimated # host writes + estimated # GC writes

* Predicting # GC writes is non-trivial



Approach (i): OP Allocation as Part of Write Allocation

i Y . over-provisioned

<flash capacity allocated to workload (A)>

« # GC writes is determined by the allocated OP capacity
« The larger OP capacity allocated, the fewer GC writes generated

OP capacrty | workioad (A) | +—

.
user capacity |*

flash device

‘ workload (B) ‘ G

OP-allocation write-allocation

* Write-allocation must come with corresponding OP-allocation
« OP-allocation: total OP capacity is divided to all the workloads
« We employ an existing model to estimate # GC writes under varying OP sizes



Challenge (ii): Need of Fair Write Attribution

 Fair attribution of resource consumption is key to fair allocation
» Write allocation = division of total available writes
» Write attribution = division of already-consumed writes

 However, write attribution is non-trivial
W(-): # total writes H(-): # host writes G(-): # GC writes

| work (4) | | work (B) | | work () | | work (B) |

OP capacity OP capacity OP(A)|OP(B)

W(A)=H(A)+G(A)  W(B)=H(B)+G(B) W(A,B)=H(A)+H(B)+G(A,B)

» # GC writes increases, when consolidated: G(A,B) > G(A) + G(B)
 # total writes increases, when consolidated: W(A,B) > W(A) + W(B)

 How can we attribute G(A,B)-G(A)-G(B) to A and B?



Approach (ii): Employing Shapley Value

 We employ Shapley value from cooperative game theory

A tool for distributing the total gain (surplus) generated by a group of players
participating in a cooperative game
» The distribution is know to be fair

 The payoff for player i

N: cooperation set S: subsets of N excludingi V(S): expected gain S makes

o= Y P s (i) - us)
SCN\1i} '

. V(SU{i}) = expected gain S + {i} make by S + {i}
- V(S) = expected gain S make by S

- V(SU{i}) - V(S) = contribution of i when he/she cooperates with S




Approach (ii): Employing Shapley Value

* Analogy - cooperative players : co-running workloads
 Total gain : total # writes
« Payoff for player i : # writes attributed to workload i

« Example: workloads A & B are co-running on a flash device
« OA=1/2*W(A) + 1/2 * {W(A,B) - W(B)}

W(A)
« B =1/2* W(B) + 1/2 * {W(A,B) - W(A)}




Challenge (iii): Need of Write Control Knob

* We need to enforce a write allocation
« Each workload should not consume writes beyond its allocation

 When the device is used as main-storage
* All writes should be serviced
* Write allocation is a moot concern

 When the device is used as caching+buffering layer

» Writes can be rejected from flash
« Such writes are serviced from the next-layer
* |t brings performance (latency) penalty

Thdd
* We target flash cache+buffer

hard disk
* Writes can be serviced from flash with short latencies

* If necessary, writes can be redirected to hard disk with long latencies

‘ workload

Tflash

read | write
cache | buffer

flash system

Redirected




Approach (iii): Redirecting Writes beyond Budget

‘ workload ‘

* Write consumption < allocated budget
» All host writes are serviced from flash
« Write service times are short GC writes<
* GC also consumes writes

host writes

flash buffer

write back

hard disk

* Write consumption >= allocated budget ‘ workload
 All host writes are redirected to hard disk
* Write service times are long

« No GC writes are generated no 47 flash buffer

. -»
« No more writes are consumed by the workload GC writes

hard disk

host writes



Proposed Lifetime Management Framework

relative workload stationarity

_‘,G A’s writes
"5@ B’s writes

@ write-allocation + OP-allocation
» Total write budget and total OP capacity are divided to co-running workloads

* @ write-attribution periodically
» Shapley value-based write attribution

* 3 write-redirection if allocated writes run-out
» Workloads whose allocated writes run-out, their future writes are redirected by end of period

B’s writes run-out
now

redirection!



Compared Fair-looking Allocation Strategies

B(-): alloc budget W(-): # total writes H(-): # host writes G(-): # GC writes

* @ EVEN: partitioning OP evenly

« (i) Allocate OP l
. 81)) Es(’zicnia?ce def:ae:di B(A) < W(A) = H(A)+G(A) B(B) — W(B) = H(B)+G(B)

* @ MMF: max-min fairness division of budget

: (1) AEll(‘z.cat?c OdP evenLy W(A) = H(A) + G(A) W(B) = H(B) + G(B)
(1) Estimate demands B(A) — W(A) = W(A) B(B) — W(B) = W(B)

« (iii) Apply max-min fairness
 (iv) Re-partition OP based on W
* 3 Iso-WAF: equalizing write amplification factor

« (i) Find OP partition that achieves iso-WAF such that W(A) _ W(B)

A H(A) H(B)
(i1) Estimate demands B(A) — W(A) = H(A)+G(A) B(B) — W(B) = H(B)+G(B)

* @ SV: Shapley value division of budget

« Assuming that total budget is already consumed writes, apply Shapley value




Evaluation
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Individual workloads are combined for multi-workload scenarios

Evaluation of fairness in write allocation
» Write response time is determined by # redirected writes
» We evaluate fairness as the difference in write response times across the workloads

Results are normalized to scenarios where device lifetime is not considered

SV allocation is the best in terms of fairness
« Write response times of the workloads are close to one another
» SV allocation equalizes fraction of redirected host writes



(2) Multi-Resource Allocation Problem and Our Proposal

 Limitations of existing resource allocations

 Dominant resource fairness (DRF) for multi-resource allocation

* Adopting DRF in flash context

- Evaluation DRF-allocations, non-DRF allocations, and their variants
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Background: Existing Flash Resource Allocations

Workload C Host system
Workload A 20 GB i} i ' i Workload C
40 GB / Yorkload ) | 2 GB/s
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[Memory capacity allocation] [Bandwidth allocation]

 Existing flash allocation techniques target two primitive resource types,
capacity or bandwidth

* Flash capacity allocations
* |In a caching layer, the larger memory capacity for a workload, the higher hit ratio

* Flash bandwidth allocations
* |In a storage system, the more bandwidth for a workload, the higher performance i



Motivation: Independent Resource Allocations
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 Existing techniques allocate primitive resources independently
* An independent memory capacity allocation does not consider corresponding bandwidth allocation

» This can decrease the performance of workloads
 Allocating 40 GB to workload A leads to a bandwidth demand of 2.5 GB/s
« What if an independent bandwidth allocation gives only 1.5 GB/s to workload A?

* Our motivation: all relevant resources should be allocated jointly
» A workload’s demands for different resources are correlated to each other

[Independent bandwidth allocation]
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Related Work: Dominant Resource Fairness (DRF)-1
Blusera [l userB ]

. User A . User B

Dominant-share of User A
100% . 100%
User A runs tasks with 12 GB _ max(3 CPUs , 12 GB \
Demand-vector 18 GB 9 CPUs , 18 GB
50% <1 CPU, 4 GB> 50% I
- Dominant-share of User B
User B runs tasks with 6 CPUs 6 CPUs , 2 GB
0% CPUs Memory Demand-vector 0% CPUs Memory 9 CPUs ) max(9 CPUs, 18 GB)

(9 total) (18 GB total) <3 CPU, 1 GB>

(9 total) (18 GB total)
[Given two resources] [Given two users]

[DRF seeks to equalize dominant-shares]

 DRF [NSDI’11] is a solution to “multi-resource” “fair” allocation problem
« Given multiple resources: CPUs (9 total) & Memory (18 GB total)

» Given multiple users with “demand-vector”: User A’s <1 CPU, 4 GB> & User B’s <3 CPU, 1 GB>
* DRF assumes that individual resources’ demands increase in a linear fashion
« Goal of DRF: users’ dominant-shares are equalized

A user’s dominant-share is the maximum her fractional needs for different resources



Related Work: Dominant Resource Fairness (DRF)-2

Total Resources: 9 CPUs, 18 GB Memory
User A <1 CPU, 4 GB>, User B <3 CPU, 1 GB>

Schedule User A User B CPU RAM
res. shares | dom. share | res. shares | dom. share | total alloc. | total alloc.
User B (0, 0) 0 (3/9, 1/18) 1/3 39 1/18
User A (1/9, 4/18) 2/9 (3/9, 1/18) 1/3 4/9 518
User A (2/9, 8/18) 4/9 (3/9, 1/18) 1/3 59 9/18
User B (2/9, 8/18) 4/9 (6/9, 2/18) 23 8/9 10/18

User A | (3/9, 12/18) | 23 | (69, 2/18) | 273 1 14/18

[DRF allocation process based on progressive-filling (PF) algorithm]

 DRF employs “progressive-filling (PF)” algorithm
* |t allocates demand-vector to a workload & calculates/compares dominant-shares
* |t repeats until one resource is fully allocated
* DRF based on demand-vector & PF offers several desirable fairness properties

 Incentive compatibility, strategy-proofness, envy-freeness, and Pareto efficiency
« Refer to [NSDI’11] for details
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Observation: Flash Mem Cap vs Bandwidth Demands
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* We characterized actual consumption (demands) of memory capacity & bandwidth
« Bandwidth consumption under varying memory capacity allocations
« Bandwidth consumer (1): reads (from the host/workload) that are hit/serviced in flash cache
» # read hits is determined by its read hit ratio, which depends on its allocated memory capacity
» Bandwidth consumer (2): all writes (from the host/workload) that are serviced in flash buffer
 Its bandwidth consumption is independent from allocated memory capacity

 Demands for the two resources are not linear, thus, vanilla DRF cannot be employed



Proposed Allocation: Non-Linearity Aware DRF (nDRF)

Bandwidth

E:.‘.........HEE'E‘.‘?‘.E‘P!.? ...... Alloc (Capacity, Bandwidth) for i
2] I fst Alloc: (1 unit, £1)
E2 2nd Alloc: (2 units, £1+€3)
""" 3rd Alloc; (3 units, E1+€2+€3)
€1 4th Alloc: (4 units, £1+E7+E3+E4)

unit Eapa!%ty

[Our modified PF works with non-linearity in resource demands]

« To embrace non-linear relationship in demands, we modified PF (called nDRF)
* Our modified PF algorithm works as follows:

|t allocates a unit memory capacity increment and its corresponding bandwidth increment
» This process continues until one of the two resources is fully allocated

 Specifically, nDRF jointly allocates memory capacity & bandwidth
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Observation: Flash Mem. Capacity vs Lifetime Demands
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* We characterized demands of mem. capacity & lifetime (cumulative # writes)
 Lifetime (writes) consumption under varying memory capacity allocations
« Lifetime consumer (1): @ all writes from the host/workloads
« Lifetime consumer (2): @ writes from HDD to flash cache for read cache misses
« Lifetime consumer (3): @ writes generated during garbage collection process

« Cum. # writes (lifetime) & mem. capacity demands are non-convex/concave



Proposed Allocation: Lifetime-Aware DRF (£DRF)
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[Our grid search works with non-convex/concave relationship]

* To embrace non-convex relationship of memory capacity and lifetime demands,
we proposed grid search (called ¢DRF)
» The modified PF of nDRF may lead to a non-Pareto allocation
|t evaluates all feasible allocations and finds the one that most equalizes dominant-shares

* |f exploration space is large, one can employ hierarchical approach

* (1) Exhaustive grid search with a large memory capacity unit
* (2) Subsequently, exhaustive grid search with a small memory capacity unit

» Specifically, €DRF jointly allocates capacity, bandwidth, & lifetime 2



Example: An nDRF/ZDRF Allocation

Total amounts of resources: capacity (1,280 MB), bandwidth (81,920 KB/s), # available writes (100,000,000)

Workload Capacity (MB) | Bandwidth (KB/s) | Dominant-Resource Dominant-Share

OST - prxy 640 24,180 Capacity 640/1,280 = 0.500

OST - web 576 3,852 Capacity 576/1,280 = 0.450

OST - proj 64 42,278 Bandwidth 42,278/81,920 = 0.516
Total Allocated 1,280 70,310

[nDRF - memory capacity/bandwidth allocation, assuming writes are not a bottleneck/dominant-resource]

Workload Cap (MB) | BW (KB/s) Write (#) Dominant-Resource Dominant-Share

OST - prxy 64 23,973 45,538,103 Write 45M/100M = 0.450

OST - web 640 3,853 9,465,327 Capacity 640/1,280 = 0.500

OST - proj 64 42,278 44,525,155 Bandwidth 42,278/81,920 = 0.516
Total Allocated 768 70,105 99,528,585

[¢DRF - memory capacity/bandwidth/lifetime(write) allocation]




Comparison of Different Allocations

Resource types considered in allocation

Lifetime management method

Allocation Strategy Capacity Bandwidth Lifetime Throttling Automatic
nDRF ) 0o
¢DRF 0o ) o) o
nDRF + even throttling ) 0] O (even)
NDRF + MMF throttling ) 0] O (MMF)
EqualHR )
EqualHR + MMF throttling o O (MMF)
MaxCumHR 0]
MaxCumHR + MMF throttling 0] O (MMF)

 For (online) nDRF, lifetime can be managed by additional throttling mechanism
* Even throttling: total remaining writes are divided evenly, and each can use only allocated writes

* MMF throttling: demand max-min fairness is used in dividing total available writes across workloads

 Also, two often-used online memory capacity allocations: EqualHR (that equalizes hit

ratios) & MaxCumHR (that maximizes aggregate hit ratio) across workloads
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Our Proposed Online Adaptive Framework

Past Epochs Target Epoch  End

;@ I <€ T *@) time

Allocation Enfon-:ement I

( #HostRw ) (C nDRF ) ((C: Fixed # of Blocks )
( Cap vs Writes ) ( €DRF ) (B: Token Bucket )
( Cap vs BW ) ( Others ) (W: Write Throttling)

* We proposed an online resource allocation framework

* A new allocation at every “epoch” - a period of relative workload stationarity

* (O Demand prediction: predicts workloads’ resource demands based on the near-past epochs
* (2 Resource allocation: performs an allocation at the beginning of the target epoch

* (3 Allocation enforcement: enforces the allocation till the end of the epoch
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Evaluation Result: in Offline Settings

£ B nDRF[_ | nDRF+Even[ | nDRF+MMF I 'DRF|[ | nDRF+Even[ | nDRF+MMF
© [ ¢DRF N EqualHR Y EqualHR+MMF I ¢oRF [l EqualHR Y EqualHR+MMF
8“ :llglzl MaxCumHR m MaxCumHR+MMF § 1.6: MaxCumHR m MaxCumHR+MMF
Toq42 | g 14T 1
;-8’1.0 <fe coece oloed q 8E:'I'%::ﬁﬁﬁﬁﬁ:ﬁﬁﬁﬁf:ﬁﬁﬁﬁﬁ I B
—>08 L n;";'o:a—— 77777777777777777777777777777777777777777
Sm 0.6 064+ oL NSg
0004 L Si=0.41
—+0.2 L S 0.2
#+ 0.0 < 0.0 mds usr
[# consumed writes / total # available writes] [Average response time]

- 8 different allocation strategies under a consolidation scenario (mds+proj+usr)

» Lifetime consumption (# consumed writes normalized to # available writes)
 Lifetime-unaware allocations (nDRF, EqualHR, MaxCumHR) consume more writes than available
- ¢DRF and MMF throttling can make consolidated workloads consume only available writes

» Performance fairness (how equitable response times are)
 (Lifetime-unaware) nDRF achieves quite equitable response times
« ¢DRF achieves quite equitable response times while managing the lifetime
« Throttling-based allocations provide poorer performance fairness 29



Evaluation Result: in Online Settings
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» 3 different allocation strategies under a consolidation scenario (prxy+hm+prn)
« 6 consecutive 10-min epochs (1 hour execution & re-allocation at every 10 mins)

« {DRF/nDRF+MMF consume only available writes, while nDRF does not
 (Lifetime-unaware) nDRF provides quite equitable response times

 When lifetime is managed using throttling (hnDRF+MMF), things get worse

* When lifetime is allocated based on €DRF, response times are quite equitable



Concluding Remarks

» Consolidating multiple workloads on a single flash device is a common practice
* There may be a strong need of fair allocation of shared flash resources
* (1) Write allocation problem (device lifetime only)
« Employed Shapley value for write attribution
« Compared fair-looking allocation strategies using our framework
* (2) Multi-resource allocation problem (capacity + bandwidth + lifetime)
« Employed and modified DRF for our context
« Compared DRF, non-DRF, and others using our framework
* Applying classical concepts from other domains to flash problems

« Requires accurate demand estimation
« Assumes stationary workload behaviors
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