
Notions of Fairness
in SSD Resource Allocation

Wonil Choi

Hanyang University

NVRAMOS 2023

1

Introduction: Success of NAND Flash Memory

• Cost aspect: decreased cost-per-bit (or increased memory capacity)
• Small feature size (below 10nm)

• 3D packaging technology (beyond 100 layers)

• High cell bit density (beyond 4 bit-per-cell)

• Performance aspect: decreased latencies & increased bandwidths
• Advanced NAND flash commands (e.g., full sequence program, suspend/resume)

• SSD-level enhancement techniques (e.g., caching, parallelism)

• State-of-the-art host-SSD interfaces (e.g., PCIe, NVMe)

• Consequently, NAND flash-based SSDs are more widely used

2

Introduction: Advent of Consolidated Flash

• Recently, a single flash device is shared by multiple workloads
• Traditionally, only one workload is executed on a single flash device

• Thanks to the increased memory capacity and performance, multiple workloads can be
executed simultaneously on a single flash device

• We call such a flash device “consolidated flash”

• Consolidated flash can be found in the storage hierarchy
• A consolidated flash can be used as main/secondary storage

• We mainly target a consolidated flash in a caching/buffering layer

Flash device

Workload

[Single-workload scenario]

Consolidated flash device

[Multi-workload scenario]

Workload 1

Workload 3 Workload 4

Workload 2

…

Host system

Caching/buffering

Main/secondary

Storage system

I/O requests

[Storage hierarchy]

3

Introduction: Fair Resource Allocation for
Consolidated Flash in Congestion

• There is a possibility of congestion for flash resources
• Workloads’ collective resource demands > available amounts of resource

• In such situations, a fair resource allocation is required

• We explore fair resource allocations for consolidated flash

Consolidated flash device

Workload 1

Workload 4 Workload 5

Workload 2

…

Workload 3

Workload 6

Workload 7 Workload 8

Collective demand

Available resource

< If congested,

fair resource

allocation is required!

Workload 9

4

Target SSD Resource Types (Executive Summary)

• A flash device has its own finite lifetime
• A device can service a fixed number of write operations, after which it becomes unavailable

• Considered the flash lifetime as a first-class resource to be allocated

• Allocation of flash lifetime?
• Total # writes the co-running workloads can collectively consume is given (write budget)

• The write budget is distributed (allocated) to the competing workloads

• Each workload is not allowed to consume flash lifetime once its allocated writes run out

• (1) Fair allocation of “device lifetime” in isolation
• Assumed that other resources (bandwidth, capacity) are not bottlenecks

• Referred to as “write allocation problem”

• (2) Fair allocation of “device lifetime” on par with “capacity” and “bandwidth”
• Assumed that all or any of the three resource types are bottlenecks

• Referred to as “multi-resource allocation problem”

5

(1) Write Allocation Problem and Our Proposal

• Three challenges in write allocation problem

• Our corresponding approaches for the challenges

• Our proposed device lifetime management framework

• Compared fair-looking allocation strategies and evaluation of them

6

Challenge (i): Consideration of Hidden Writes

host writes

flash device

workload (A)

workload (B)

GC by w(A)

GC by w(B)

GC writes

• We need to estimate write demand of each workload for write allocation
• Write demand = estimated # host writes

• Predicting # host writes is easy

• Garbage collection (GC) is another major write contributor
• GC relocates valid data internally, which consumes writes

• Write demand = estimated # host writes + estimated # GC writes

• Predicting # GC writes is non-trivial

Approach (i): OP Allocation as Part of Write Allocation

workload (A)

workload (B)

fl
a
sh

 d
e
v
ic

e

OP capacity

user capacity

total write
budget

write-allocationOP-allocation

A’s user data

<flash capacity allocated to workload (A)>

emptyuser capacity
over-provisioned

(OP) capacity

• # GC writes is determined by the allocated OP capacity
• The larger OP capacity allocated, the fewer GC writes generated

• Write-allocation must come with corresponding OP-allocation
• OP-allocation: total OP capacity is divided to all the workloads

• We employ an existing model to estimate # GC writes under varying OP sizes

Challenge (ii): Need of Fair Write Attribution

W(A)=H(A)+G(A) W(B)=H(B)+G(B) W(A,B)=H(A)+H(B)+G(A,B)

OP capacity

user capacity

work (A)

OP capacity

user capacity

work (B)

OP(A) OP(B)

user capacity

work (B)work (A)

W(‧): # total writes H(‧): # host writes G(‧): # GC writes

vs vs

• Fair attribution of resource consumption is key to fair allocation
• Write allocation = division of total available writes

• Write attribution = division of already-consumed writes

• However, write attribution is non-trivial

• # GC writes increases, when consolidated: G(A,B) > G(A) + G(B)

• # total writes increases, when consolidated: W(A,B) > W(A) + W(B)

• How can we attribute G(A,B)-G(A)-G(B) to A and B?

Approach (ii): Employing Shapley Value

• V(SU{i}) - V(S) = contribution of i when he/she cooperates with S

• V(S) = expected gain S make 💲 by S

• We employ Shapley value from cooperative game theory

• A tool for distributing the total gain (surplus) generated by a group of players
participating in a cooperative game

• The distribution is know to be fair

• The payoff for player i

N: cooperation set S: subsets of N excluding i V(S): expected gain S makes

• V(SU{i}) = expected gain S + {i} make 💲 by S + {i}

Approach (ii): Employing Shapley Value

OP (A)

user (A)

W(A)

OP (B)

user (B)

W(B)

OP(A) OP(B)

user(A) user(B)

W(A,B)

—+0.5{ }0.5

OP (B)

user (B)

W(B)

OP (A)

user (A)

W(A)

OP(A) OP(B)

user(A) user(B)

W(A,B)

—+0.5{ }0.5

• Analogy - cooperative players : co-running workloads
• Total gain : total # writes

• Payoff for player i : # writes attributed to workload i

• Example: workloads A & B are co-running on a flash device
• ɸA = 1/2 * W(A) + 1/2 * {W(A,B) - W(B)}

• ɸB = 1/2 * W(B) + 1/2 * {W(A,B) - W(A)}

Challenge (iii): Need of Write Control Knob

hard disk

flash system

read
cache

write
buffer

workload

Tflash

Thdd

R
e
d
ir

e
c
te

d

• We need to enforce a write allocation
• Each workload should not consume writes beyond its allocation

• When the device is used as main-storage
• All writes should be serviced

• Write allocation is a moot concern

• When the device is used as caching+buffering layer
• Writes can be rejected from flash

• Such writes are serviced from the next-layer

• It brings performance (latency) penalty

• We target flash cache+buffer
• Writes can be serviced from flash with short latencies

• If necessary, writes can be redirected to hard disk with long latencies

Approach (iii): Redirecting Writes beyond Budget

hard disk

flash buffer

workload

host writes

hard disk

flash buffer

workload

write back

h
o
st

 w
ri

te
s

GC writes

GC writes
no

• Write consumption < allocated budget
• All host writes are serviced from flash

• Write service times are short

• GC also consumes writes

• Write consumption >= allocated budget
• All host writes are redirected to hard disk

• Write service times are long

• No GC writes are generated

• No more writes are consumed by the workload

Proposed Lifetime Management Framework

beginning end

budget

①

A’s writes

B’s writes

A’s OP B’s OP

② ② ②

consumed
writes

+③ +③ +③

A’s writes remain

B’s writes run-out
now

redirection!

time

relative workload stationarity

• ① write-allocation + OP-allocation
• Total write budget and total OP capacity are divided to co-running workloads

• ② write-attribution periodically
• Shapley value-based write attribution

• ③ write-redirection if allocated writes run-out
• Workloads whose allocated writes run-out, their future writes are redirected by end of period

Compared Fair-looking Allocation Strategies

B(‧): alloc budget W(‧): # total writes H(‧): # host writes G(‧): # GC writes

A’s OP B’s OP

B(A) ← W(A) = H(A)+G(A) B(B) ← W(B) = H(B)+G(B)

B(A) ← W(A) = W(A) B(B) ← W(B) = W(B)

A’s OP B’s OP

A’s OP B’s OP

W(A) = H(A) + G(A) W(B) = H(B) + G(B)

• ① EVEN: partitioning OP evenly
• (i) Allocate OP evenly

• (ii) Estimate demands

• ② MMF: max-min fairness division of budget
• (i) Allocate OP evenly

• (ii) Estimate demands

• (iii) Apply max-min fairness

• (iv) Re-partition OP based on W

• ③ Iso-WAF: equalizing write amplification factor
• (i) Find OP partition that achieves iso-WAF

• (ii) Estimate demands

• ④ SV: Shapley value division of budget
• Assuming that total budget is already consumed writes, apply Shapley value

A’s OP B’s OP such that
W(A)

H(A)
=

W(B)

H(B)

B(A) ← W(A) = H(A)+G(A) B(B) ← W(B) = H(B)+G(B)

Evaluation

• Individual workloads are combined for multi-workload scenarios

• Evaluation of fairness in write allocation
• Write response time is determined by # redirected writes

• We evaluate fairness as the difference in write response times across the workloads

• Results are normalized to scenarios where device lifetime is not considered

• SV allocation is the best in terms of fairness
• Write response times of the workloads are close to one another

• SV allocation equalizes fraction of redirected host writes

(2) Multi-Resource Allocation Problem and Our Proposal

• Limitations of existing resource allocations

• Dominant resource fairness (DRF) for multi-resource allocation

• Adopting DRF in flash context

• Evaluation DRF-allocations, non-DRF allocations, and their variants

17

Background: Existing Flash Resource Allocations

• Existing flash allocation techniques target two primitive resource types,
capacity or bandwidth

• Flash capacity allocations
• In a caching layer, the larger memory capacity for a workload, the higher hit ratio

• Flash bandwidth allocations
• In a storage system, the more bandwidth for a workload, the higher performance

[Memory capacity allocation]

Workload A

Workload B

Workload C

Workload D

100 GB device

20 GB

30 GB

40 GB

10 GB

Host system

5 GB/s device

[Bandwidth allocation]

Workload D

Workload C
Workload A

Workload B

1 GB/s

2 GB/s
1.5 GB/s

0.5 GB/s

18

Motivation: Independent Resource Allocations

• Existing techniques allocate primitive resources independently
• An independent memory capacity allocation does not consider corresponding bandwidth allocation

• This can decrease the performance of workloads

• Allocating 40 GB to workload A leads to a bandwidth demand of 2.5 GB/s

• What if an independent bandwidth allocation gives only 1.5 GB/s to workload A?

• Our motivation: all relevant resources should be allocated jointly
• A workload’s demands for different resources are correlated to each other

[Independent memory capacity allocation]

Workload A

Workload B

Workload C

Workload D

100 GB device

20 GB

30 GB

40 GB

10 GB

Demand of

2.5 GB/s

Host system

5 GB/s device

[Independent bandwidth allocation]

Workload D

Workload C

Workload A

Workload B

Allocation of

1.5 GB/s

19

• DRF [NSDI’11] is a solution to “multi-resource” “fair” allocation problem

• Given multiple resources: CPUs (9 total) & Memory (18 GB total)

• Given multiple users with “demand-vector”: User A’s <1 CPU, 4 GB> & User B’s <3 CPU, 1 GB>

• DRF assumes that individual resources’ demands increase in a linear fashion

• Goal of DRF: users’ dominant-shares are equalized

• A user’s dominant-share is the maximum her fractional needs for different resources

Related Work: Dominant Resource Fairness (DRF)-1

[Given two resources]

CPUs

(9 total)
Memory

(18 GB total)

User A User B

0%

100%

50%

User A runs tasks with

Demand-vector

<1 CPU, 4 GB>

User B runs tasks with

Demand-vector

<3 CPU, 1 GB>

[Given two users] [DRF seeks to equalize dominant-shares]

CPUs

(9 total)
Memory

(18 GB total)

User A User B

0%

100%

50%

3 CPUs 12 GB

6 CPUs 2 GB

3 CPUs , 12 GB

9 CPUs , 18 GB

Dominant-share of User A

= max()
12 GB

18 GB

6 CPUs , 2 GB

9 CPUs , 18 GB

Dominant-share of User B

= max()
6 CPUs

9 CPUs

=

20

• DRF employs “progressive-filling (PF)” algorithm

• It allocates demand-vector to a workload & calculates/compares dominant-shares

• It repeats until one resource is fully allocated

• DRF based on demand-vector & PF offers several desirable fairness properties

• Incentive compatibility, strategy-proofness, envy-freeness, and Pareto efficiency

• Refer to [NSDI’11] for details

Related Work: Dominant Resource Fairness (DRF)-2

User A <1 CPU, 4 GB>, User B <3 CPU, 1 GB>

Total Resources: 9 CPUs, 18 GB Memory

[DRF allocation process based on progressive-filling (PF) algorithm]

21

Observation: Flash Mem Cap vs Bandwidth Demands

• We characterized actual consumption (demands) of memory capacity & bandwidth

• Bandwidth consumption under varying memory capacity allocations

• Bandwidth consumer (1): reads (from the host/workload) that are hit/serviced in flash cache

• # read hits is determined by its read hit ratio, which depends on its allocated memory capacity

• Bandwidth consumer (2): all writes (from the host/workload) that are serviced in flash buffer

• Its bandwidth consumption is independent from allocated memory capacity

• Demands for the two resources are not linear, thus, vanilla DRF cannot be employed

[Open Storage Trace - prn] [Open Storage Trace - hm]

Bandwidth consumers

= RD(read) hit + WR(write)

22

Proposed Allocation: Non-Linearity Aware DRF (nDRF)

• To embrace non-linear relationship in demands, we modified PF (called nDRF)

• Our modified PF algorithm works as follows:
• It does not allocate a fixed capacity and bandwidth increments (as in conventional PF)

• It allocates a unit memory capacity increment and its corresponding bandwidth increment

• This process continues until one of the two resources is fully allocated

• Specifically, nDRF jointly allocates memory capacity & bandwidth

[Our modified PF works with non-linearity in resource demands]

23

Observation: Flash Mem. Capacity vs Lifetime Demands

• We characterized demands of mem. capacity & lifetime (cumulative # writes)

• Lifetime (writes) consumption under varying memory capacity allocations

• Lifetime consumer (1): all writes from the host/workloads

• Lifetime consumer (2): writes from HDD to flash cache for read cache misses

• Lifetime consumer (3): writes generated during garbage collection process

• Cum. # writes (lifetime) & mem. capacity demands are non-convex/concave

Lifetime (writes) consumers

= + + 1 2 3[Open Storage Trace - prxy] [Open Storage Trace - prn]

1

2

3

24

Proposed Allocation: Lifetime-Aware DRF (ℓDRF)

• To embrace non-convex relationship of memory capacity and lifetime demands,
we proposed grid search (called ℓDRF)
• The modified PF of nDRF may lead to a non-Pareto allocation

• It evaluates all feasible allocations and finds the one that most equalizes dominant-shares

• If exploration space is large, one can employ hierarchical approach
• (1) Exhaustive grid search with a large memory capacity unit

• (2) Subsequently, exhaustive grid search with a small memory capacity unit

• Specifically, ℓDRF jointly allocates capacity, bandwidth, & lifetime

[Our grid search works with non-convex/concave relationship]

25

Example: An nDRF/ℓDRF Allocation
Total amounts of resources: capacity (1,280 MB), bandwidth (81,920 KB/s), # available writes (100,000,000)

Workload Capacity (MB) Bandwidth (KB/s) Dominant-Resource Dominant-Share

OST – prxy 640 24,180 Capacity 640/1,280 = 0.500

OST – web 576 3,852 Capacity 576/1,280 = 0.450

OST - proj 64 42,278 Bandwidth 42,278/81,920 = 0.516

Total Allocated 1,280 70,310

[nDRF - memory capacity/bandwidth allocation, assuming writes are not a bottleneck/dominant-resource]

[ℓDRF - memory capacity/bandwidth/lifetime(write) allocation]

Workload Cap (MB) BW (KB/s) Write (#) Dominant-Resource Dominant-Share

OST – prxy 64 23,973 45,538,103 Write 45M/100M = 0.450

OST – web 640 3,853 9,465,327 Capacity 640/1,280 = 0.500

OST - proj 64 42,278 44,525,155 Bandwidth 42,278/81,920 = 0.516

Total Allocated 768 70,105 99,528,585

26

Comparison of Different Allocations

Resource types considered in allocation Lifetime management method

Allocation Strategy Capacity Bandwidth Lifetime Throttling Automatic

nDRF O O

ℓDRF O O O O

nDRF + even throttling O O O (even)

nDRF + MMF throttling O O O (MMF)

EqualHR O

EqualHR + MMF throttling O O (MMF)

MaxCumHR O

MaxCumHR + MMF throttling O O (MMF)

• For (online) nDRF, lifetime can be managed by additional throttling mechanism

• Even throttling: total remaining writes are divided evenly, and each can use only allocated writes

• MMF throttling: demand max-min fairness is used in dividing total available writes across workloads

• Also, two often-used online memory capacity allocations: EqualHR (that equalizes hit
ratios) & MaxCumHR (that maximizes aggregate hit ratio) across workloads 27

Our Proposed Online Adaptive Framework

• We proposed an online resource allocation framework
• A new allocation at every “epoch” – a period of relative workload stationarity

• ① Demand prediction: predicts workloads’ resource demands based on the near-past epochs

• ② Resource allocation: performs an allocation at the beginning of the target epoch

• ③ Allocation enforcement: enforces the allocation till the end of the epoch

28

Evaluation Result: in Offline Settings

• 8 different allocation strategies under a consolidation scenario (mds+proj+usr)

• Lifetime consumption (# consumed writes normalized to # available writes)
• Lifetime-unaware allocations (nDRF, EqualHR, MaxCumHR) consume more writes than available

• ℓDRF and MMF throttling can make consolidated workloads consume only available writes

• Performance fairness (how equitable response times are)
• (Lifetime-unaware) nDRF achieves quite equitable response times

• ℓDRF achieves quite equitable response times while managing the lifetime

• Throttling-based allocations provide poorer performance fairness

[Average response time][# consumed writes / total # available writes]

29

Evaluation Result: in Online Settings

[# consumed writes normalized to

total # available writes]

[nDRF

+MMF]

[ℓDRF]

[nDRF]

• 3 different allocation strategies under a consolidation scenario (prxy+hm+prn)
• 6 consecutive 10-min epochs (1 hour execution & re-allocation at every 10 mins)

• ℓDRF/nDRF+MMF consume only available writes, while nDRF does not

• (Lifetime-unaware) nDRF provides quite equitable response times

• When lifetime is managed using throttling (nDRF+MMF), things get worse

• When lifetime is allocated based on ℓDRF, response times are quite equitable 30

Concluding Remarks

• Consolidating multiple workloads on a single flash device is a common practice

• There may be a strong need of fair allocation of shared flash resources

• (1) Write allocation problem (device lifetime only)

• Employed Shapley value for write attribution

• Compared fair-looking allocation strategies using our framework

• (2) Multi-resource allocation problem (capacity + bandwidth + lifetime)

• Employed and modified DRF for our context

• Compared DRF, non-DRF, and others using our framework

• Applying classical concepts from other domains to flash problems

• Requires accurate demand estimation

• Assumes stationary workload behaviors

31

